TheHingineer

  • DBMS


  • DBMS Part-1

  • DBMS Part-2

  • DBMS Part-3

  • DBMS Part-4

  • DBMS Part-5

  •  Data Mining in DBMS 

     Data Mining kya hota hai?

    Data Mining ka matlab hai bade data me se useful patterns, trends aur knowledge nikalna.

     Ye bilkul waise hai jaise pahadon me se sona nikalna – data ke samundar me se valuable cheezein dhundhna.

     Simple Definition:

    Data Mining ek process hai jisme hum bade data sets me se patterns, relationships, ya useful information find karte hain using statistical ya machine learning techniques.

     Data Mining kyu zaroori hai?

    Aaj ke time me companies ke paas huge data hota hai — GBs ya TBs me. Lekin wo raw data akela kuch kaam ka nahi hota.

    Data mining help karta hai:

    • Business decision lene me

    • Customer behavior samajhne me

    • Future predict karne me

    • Fraud detect karne me

    • Recommendations dene me (jaise Netflix, Amazon)

     Data kaha store hota hai?

    Data mining ke liye data in sources se aata hai:

    • Databases (DBMS)

    • Data Warehouses

    • Files, logs

    • Web data


     DBMS aur Data Mining 

    DBMS Data Mining
    Data ko store aur manage karta hai Data ka analysis karke patterns find karta hai
    CRUD operations (Create, Read, Update, Delete) karta hai Knowledge discover karta hai
    Example: MySQL, Oracle Example: Weka, Python, RapidMiner

     Data Mining Process ke Steps

    KDD Process (Knowledge Discovery in Database):

    Raw Data → Cleaning → Integration → Selection → Transformation → Mining → Evaluation → Knowledge

    Breakdown:

    1. Data Cleaning

      • Galat ya missing data hataana

      • Example: “NULL” values remove karna

    2. Data Integration

      • Alag-alag sources ka data jodna

      • Example: Sales aur customer DB merge karna

    3. Data Selection

      • Sirf relevant data choose karna

      • Example: Sirf 2023 ke sales record lena

    4. Data Transformation

      • Data ko mining ke layak banana

      • Example: Values ko normalize karna

    5. Data Mining

      • Algorithms use karke patterns find karna

      • Example: “25-30 age ke log product X lete hain”

    6. Pattern Evaluation

      • Jo patterns mile wo useful hain ya nahi, check karna

      • Example: Random patterns hata dena

    7. Knowledge Presentation

      • Result ko charts, graphs ya reports me dikhana


     Data Mining ke Do Main Types

    1. Descriptive

    Jo data describe karta hai
    Example: “Zyada log 6–9 PM ke beech shopping karte hain”

    2. Predictive

    Jo data se future predict karta hai
    Example: “Customer X agle mahine service band kar sakta hai”


     Common Data Mining Techniques

    Technique Use Example
    Classification Data ko categories me divide karna Email: spam ya not spam
    Clustering Similar data ko group karna Same buying habits wale customers
    Association Rule Items ke beech relationship dhoondhna “Bread lene wale log butter bhi lete hain”
    Regression Number predict karna Salary ya stock price prediction
    Anomaly Detection Odd/abnormal behavior dhoondhna Credit card fraud spot karna

     Example: Association Rule Mining

    Suppose ye transactions hain:

    Transaction ID Items Bought
    T1 Milk, Bread
    T2 Milk, Bread, Butter
    T3 Bread, Butter
    T4 Milk, Bread, Butter, Jam

    Rule milta hai:

    “Jo log Milk aur Bread lete hain, wo aksar Butter bhi lete hain.”

    Use:

    • Product recommend karne me

    • Store layout decide karne me


     Tools jo Data Mining ke liye use hote hain:

    • Weka – Beginner friendly tool

    • Python / R – Coding wale tools (powerful)

    • RapidMiner, Orange – Drag & Drop type tools

    • SQL – With mining extensions


     Data Mining ke Fayde

    1. Smart business decisions

    2. Customer ko samajhna

    3. Fraud detect karna

    4. Cost kam karna

    5. Better marketing plans

     Data Mining ki Challenges

    • Privacy aur security issues

    • Data cleaning ka time lagta hai

    • Big data pe kaafi slow ho sakta hai

    • Patterns galat interpret karna


     Summary

    Term Simple Meaning
    Data Mining Badi quantity ke data me se patterns dhoondhna
    Classification Data ko groups me divide karna
    Clustering Similar data ek group me
    Association Rules “Ye item ke saath wo item bhi hota hai”
    Regression Number prediction
    Scroll to Top