DBMS
DBMS Part-1
- DBMS Introduction
- DBMS Architecture
- Database Approach vs Traditional File System
- Advantages of DBMS
- Data Models in DBMS
- Schemas in DBMS
- Instances in DBMS
- Data Independence in DBMS
- Database Languages in DBMS
- Interfaces in DBMS
- Structure of DBMS
- Functions of DBA and Designer
- Entities and Attributes in DBMS
- ER Diagram in DBMS
- Generalization, Specialization and Aggregation in DBMS
- Converting ER Diagram to Tables in DBMS
- Difference between Object Oriented, Network and Relational Data Models
DBMS Part-2
- Relational Data Model in DBMS
- Keys in DBMS
- SQL Introduction
- DDL(Data Definition Language)
- DML(Data Manipulation Language)
- Integrity Constraints in DBMS
- Complex SQL Queries
- Joins in DBMS
- Indexing in DBMS
- Triggers in DBMS
- Assertions in DBMS
- Relational Algebra in DBMS
- Tuple Relational Calculus in DBMS
- Domain Relational Calculus in DBMS
DBMS Part-3
- Introduction to Normalization in DBMS
- Normal Forms in DBMS
- Functional Dependency in DBMS
- Decomposition in DBMS
- Dependency Preserving Decomposition in DBMS
- Lossless Join Decomposition in DBMS
- Problems with Null Values and Dangling Tuples
- Multivalued Dependency in DBMS
- Query Optimization in DBMS
- Algorithms for Select, Project and Join Operations in DBMS
- Query Optimization Methods in DBMS
DBMS Part-4
- Transactions in DBMS
- Serializability in DBMS
- Recoverability in DBMS
- Recovery Techniques in DBMS
- Log Based Recovery in DBMS
- Checkpoint in DBMS
- Deadlock in DBMS
- Concurrency Control in DBMS
- Lock Based Protocol in DBMS
- Timestamp Based Protocol in DBMS
- Validation Based Protocol in DBMS
- Multiple Granularity in DBMS
- Multi-Version Concurrency Control(MVCC) in DBMS
- Recovery with Concurrent Transactions in DBMS
DBMS Part-5
Data Warehousing in DBMS
Data Warehouse kya hota hai?
Data Warehouse ek central storage system hota hai jahan par alag-alag jagah se data collect karke store kiya jata hai. Ye data mainly analysis aur reporting ke liye use hota hai, na ki daily operations ke liye.
Simple Definition:
Data warehouse ek aisi jagah hai jahan historical data (purana data) ko collect karke analysis aur decision making ke liye store kiya jata hai.
Real Life Example:
Socho ek shopping mall chain hai jiske alag-alag cities mein stores hain. Har store ka sales data ek central system (data warehouse) mein store hota hai. Fir managers analysis kar sakte hain:
-
Sabse zyada bikne waala product kaunsa hai?
-
Kis city mein sabse zyada sales hui?
-
Sales ka trend kya hai last 6 mahine ka?
Features of Data Warehouse:
-
Subject-Oriented
Focus specific topics pe hota hai jaise ki sales, customers, ya inventory. -
Integrated
Alag-alag sources se data ko mila ke ek jaisa format banaya jata hai. -
Time-Variant
Purana (historical) data bhi store kiya jata hai, taaki trends samajh aaye. -
Non-Volatile
Data ko sirf read kiya jata hai, change ya delete nahi kiya jata.
Data Warehouse Architecture
+----------+ +--------------+
| Sales DB | | Marketing DB |
+----------+ +--------------+
\ /
\ /
+----------------+
| Data Warehouse |
+----------------+
|
+------------------+
| Business Reports |
| Dashboards |
+------------------+
ETL Process in Data Warehouse
ETL ka full form hai:
Extract → Transform → Load
1. Extract –
Data ko alag-alag sources (databases, Excel, CRM) se uthaya jata hai.
2. Transform –
Data ko clean aur format kiya jata hai (e.g. date format sahi karna, duplicates hataana).
3. Load –
Cleaned data ko data warehouse mein store kiya jata hai analysis ke liye.
Diagram:
Source Systems
(e.g., DBs, CSVs)
↓
[Extract]
↓
[Transform: Clean, Format]
↓
[Load]
↓
Data Warehouse
↓
Reports, Analysis
Example Use Case: E-Commerce Website
Source | Data |
---|---|
Sales DB | Kis product ka sale hua |
Web Logs | Kis page ko kitna dekha gaya |
Feedback | Customer ka review/feedback |
→ Ye sab data warehouse mein store hota hai
→ Query run ki ja sakti hai jaise:
“Kaunse product ne sabse achha feedback aur highest sales diya Q1 mein?”
Types of Data Warehouses
-
Enterprise Data Warehouse (EDW)
Pure organization ka data store karta hai. -
Data Mart
Sirf ek department (e.g. Finance ya HR) ka data hota hai. -
Operational Data Store (ODS)
Real-time data hota hai, jo daily use ke liye hota hai.
DBMS vs Data Warehouse
Feature | DBMS | Data Warehouse |
---|---|---|
Use | Daily transactions ke liye | Analysis aur reports ke liye |
Data | Current data | Historical + current data |
Operation | Insert, Update, Delete | Mostly read-only queries |
Users | Data entry staff | Managers, Analysts |
Benefits of Data Warehousing
-
Fast analysis aur reporting
-
Decision making mein help karta hai
-
Large data ko manage aur visualize karna easy
-
Purane trends samajhne mein help karta hai
Challenges
-
Shuru mein setup cost zyada hoti hai
-
Data ko integrate karna mushkil ho sakta hai
-
Regular maintenance chahiye
Summary
Term | Meaning |
---|---|
Data Warehouse | Central system jahan saara data store hota hai |
ETL | Data ko uthana, clean karna aur load karna |
Data Mart | Small scale warehouse, department-specific |
BI Tools | Reporting tools jaise Tableau, Power BI |