DBMS
DBMS Part-1
- DBMS Introduction
- DBMS Architecture
- Database Approach vs Traditional File System
- Advantages of DBMS
- Data Models in DBMS
- Schemas in DBMS
- Instances in DBMS
- Data Independence in DBMS
- Database Languages in DBMS
- Interfaces in DBMS
- Structure of DBMS
- Functions of DBA and Designer
- Entities and Attributes in DBMS
- ER Diagram in DBMS
- Generalization, Specialization and Aggregation in DBMS
- Converting ER Diagram to Tables in DBMS
- Difference between Object Oriented, Network and Relational Data Models
DBMS Part-2
- Relational Data Model in DBMS
- Keys in DBMS
- SQL Introduction
- DDL(Data Definition Language)
- DML(Data Manipulation Language)
- Integrity Constraints in DBMS
- Complex SQL Queries
- Joins in DBMS
- Indexing in DBMS
- Triggers in DBMS
- Assertions in DBMS
- Relational Algebra in DBMS
- Tuple Relational Calculus in DBMS
- Domain Relational Calculus in DBMS
DBMS Part-3
- Introduction to Normalization in DBMS
- Normal Forms in DBMS
- Functional Dependency in DBMS
- Decomposition in DBMS
- Dependency Preserving Decomposition in DBMS
- Lossless Join Decomposition in DBMS
- Problems with Null Values and Dangling Tuples
- Multivalued Dependency in DBMS
- Query Optimization in DBMS
- Algorithms for Select, Project and Join Operations in DBMS
- Query Optimization Methods in DBMS
DBMS Part-4
- Transactions in DBMS
- Serializability in DBMS
- Recoverability in DBMS
- Recovery Techniques in DBMS
- Log Based Recovery in DBMS
- Checkpoint in DBMS
- Deadlock in DBMS
- Concurrency Control in DBMS
- Lock Based Protocol in DBMS
- Timestamp Based Protocol in DBMS
- Validation Based Protocol in DBMS
- Multiple Granularity in DBMS
- Multi-Version Concurrency Control(MVCC) in DBMS
- Recovery with Concurrent Transactions in DBMS
DBMS Part-5
Lossless Join Decomposition in DBMS
Decomposition kya hota hai?
DBMS mein kabhi-kabhi ek badi table ko chhoti-chhoti tables mein todna padta hai, jise kehte hain Decomposition.
Isse fayda yeh hota hai ki:
Data repeat nahi hota (Redundancy kam hoti hai),
Data clean aur consistent rehta hai.
Lekin jab table ko todte hain, to humein ensure karna hota hai ki data ka loss na ho.
Lossless Join Decomposition kya hota hai?
Lossless Join Decomposition ka matlab hai:
Jab aap ek badi table ko chhoti tables mein divide karte ho aur baad mein join karke original table wapas bana lete ho — bina data loss ke.
Lossless ka simple matlab:
Lossless = No data loss after joining back
Lossy = Data lost ho gaya ya galat data aa gaya
Lossless Join kyun important hai?
Data accurate rehta hai
Redundancy kam hoti hai
Normalization ke time data safe rehta hai
Example se samjho:
Original Table: Student
RollNo | Name | Course | Dept |
---|---|---|---|
101 | Ravi | DBMS | CS |
102 | Priya | Networks | IT |
103 | Aman | OS | CS |
Ab isko do parts mein todte hain:
Student1(RollNo, Name)
Student2(RollNo, Course, Dept)
Student1:
RollNo | Name |
---|---|
101 | Ravi |
102 | Priya |
103 | Aman |
Student2:
RollNo | Course | Dept |
---|---|---|
101 | DBMS | CS |
102 | Networks | IT |
103 | OS | CS |
Join karte hain dono tables ko (on RollNo):
RollNo | Name | Course | Dept |
---|---|---|---|
101 | Ravi | DBMS | CS |
102 | Priya | Networks | IT |
103 | Aman | OS | CS |
Yehi original table tha → Lossless Join Decomposition hai.
Lossless hone ka Rule (Functional Dependency se):
Agar relation R ko R1 aur R2 mein todte ho to lossless hone ke liye:
R1 ∩ R2 → R1 ya R1 ∩ R2 → R2
Yani, jo columns dono tables mein common hain, unse hum poori table ka data nikal sakein.
Summary Table
Feature | Lossless Join Decomposition |
---|---|
Kya karta hai? | Data ko safe rakhte hue table todta hai |
Rule | Common columns se ek table ban jaani chahiye |
Fayda | No data loss, data consistency |
Kaise check karein? | Functional Dependency: R1 ∩ R2 → R1 ya R2 |