DBMS
DBMS Part-1
- DBMS Introduction
- DBMS Architecture
- Database Approach vs Traditional File System
- Advantages of DBMS
- Data Models in DBMS
- Schemas in DBMS
- Instances in DBMS
- Data Independence in DBMS
- Database Languages in DBMS
- Interfaces in DBMS
- Structure of DBMS
- Functions of DBA and Designer
- Entities and Attributes in DBMS
- ER Diagram in DBMS
- Generalization, Specialization and Aggregation in DBMS
- Converting ER Diagram to Tables in DBMS
- Difference between Object Oriented, Network and Relational Data Models
DBMS Part-2
- Relational Data Model in DBMS
- Keys in DBMS
- SQL Introduction
- DDL(Data Definition Language)
- DML(Data Manipulation Language)
- Integrity Constraints in DBMS
- Complex SQL Queries
- Joins in DBMS
- Indexing in DBMS
- Triggers in DBMS
- Assertions in DBMS
- Relational Algebra in DBMS
- Tuple Relational Calculus in DBMS
- Domain Relational Calculus in DBMS
DBMS Part-3
- Introduction to Normalization in DBMS
- Normal Forms in DBMS
- Functional Dependency in DBMS
- Decomposition in DBMS
- Dependency Preserving Decomposition in DBMS
- Lossless Join Decomposition in DBMS
- Problems with Null Values and Dangling Tuples
- Multivalued Dependency in DBMS
- Query Optimization in DBMS
- Algorithms for Select, Project and Join Operations in DBMS
- Query Optimization Methods in DBMS
DBMS Part-4
- Transactions in DBMS
- Serializability in DBMS
- Recoverability in DBMS
- Recovery Techniques in DBMS
- Log Based Recovery in DBMS
- Checkpoint in DBMS
- Deadlock in DBMS
- Concurrency Control in DBMS
- Lock Based Protocol in DBMS
- Timestamp Based Protocol in DBMS
- Validation Based Protocol in DBMS
- Multiple Granularity in DBMS
- Multi-Version Concurrency Control(MVCC) in DBMS
- Recovery with Concurrent Transactions in DBMS
DBMS Part-5
Timestamp Based Protocol in DBMS
Timestamp Based Protocol kya hota hai?
Ye ek concurrency control technique hai jiska use DBMS karta hai taaki multiple transactions ek saath safe tareeke se chal sakein bina data galat hone ke.
Har transaction ko ek unique timestamp diya jata hai, aur ye timestamp decide karta hai ki kaun sa transaction pehle chalega aur kaun baad mein.
“Jo transaction pehle aaya (older), use pehle kaam karne diya jata hai.”
Kyun zaroori hai Timestamp Protocol?
Jab multiple transactions ek saath same data access karte hain, to kuch problems ho sakti hain:
Lost updates (ek transaction ke update ko doosra hata deta hai)
Dirty reads (ek transaction galat ya adhura data read karta hai)
Inconsistency in data
Isiliye, Timestamp-Based Protocol data ko safe rakhne ke liye har transaction ko ek order mein chalata hai.
Kuch Important Terms
Term | Matlab kya hai? |
---|---|
Timestamp (TS) | Har transaction ka ek unique number |
TS(Ti) | Transaction Ti ka timestamp |
Read_TS(X) | X naam ke data item ko sabse last kis timestamp wale ne read kiya |
Write_TS(X) | X naam ke data item ko sabse last kis timestamp wale ne write kiya |
Kaise kaam karta hai?
2 Main Operations:
Read(X) – Data X ko read karna
Write(X) – Data X ko write karna (update)
Agar koi transaction Ti data item X pe kuch karna chahta hai, to hum uska timestamp TS(Ti)
dekhte hain aur neeche wale rules apply karte hain.
Read Rule:
Agar TS(Ti) < Write_TS(X)
,
iska matlab hai ki X ko ek newer transaction already write kar chuka hai, to Ti ko abort (cancel) karna padega.
Nahi to:
Allow the read
Update
Read_TS(X) = max(Read_TS(X), TS(Ti))
Write Rule:
Agar:
TS(Ti) < Read_TS(X)
→ Abort (kyunki koi naya transaction X ko already read kar chuka hai)TS(Ti) < Write_TS(X)
→ Abort (kyunki koi naya transaction X ko already write kar chuka hai)
Nahi to:
Allow the write
Update
Write_TS(X) = TS(Ti)
Example
Maan lijiye:
T1 ka timestamp = 5
T2 ka timestamp = 10
Read_TS(X) = 0
,Write_TS(X) = 0
Step 1: T1 ne Read(X) kiya
TS(T1) = 5
<Write_TS(X) = 0
X → Safe
T1 successfully read karega X
Read_TS(X) = max(0, 5) = 5
Step 2: T2 ne Write(X) kiya
TS(T2) = 10
<Read_TS(X) = 5
XTS(T2) = 10
<Write_TS(X) = 0
X
T2 successfully write karega X
Write_TS(X) = 10
Flowchart (Diagram)

Timestamp Protocol ke Advantages
Deadlock nahi hota (kyunki koi wait nahi karta)
Transactions safe order mein execute hote hain
Data consistent rehta hai
Simple logic based on timestamp
Disadvantages
Zyada aborts ho sakte hain jab concurrency high ho
Transactions ko baar-baar cancel karke dubara start karna padta hai
No waiting or locking – par phir bhi performance loss ho sakta hai
Real-Life Analogy
Sochiye aap bank token system mein hain:
Har customer ko ek token milta hai (timestamp)
Token 1 wale ka kaam pehle hota hai, fir 2, fir 3…
Agar koi token 3 wala line tod ke aage aaye to usse mana kar diya jata hai (abort)
Waise hi timestamp protocol bhi older transaction ko pehle allow karta hai.
Summary Table
Feature | Detail |
---|---|
Concurrency control | Yes |
Based on | Transaction timestamp |
Lock use karta hai? | Nahi |
Deadlock possible? | Nahi |
Transactions cancel ho sakte hain? | Haan (aborts) |
Serializability | Conflict-serializable |
Conclusion
Timestamp protocol ek powerful method hai concurrency ko handle karne ke liye.
Ye ensure karta hai ki data safe aur consistent rahe.
Isme har transaction ek unique timestamp ke according kaam karta hai.
Though deadlocks nahi hote, abort hone ka risk zyada hota hai.